Analysis Beispiele

2nd 도함수 구하기 y=2sin(x)-cos(x)^2
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.2.3
Ersetze alle durch .
Schritt 1.3.3
Die Ableitung von nach ist .
Schritt 1.3.4
Mutltipliziere mit .
Schritt 1.3.5
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Stelle die Terme um.
Schritt 1.4.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.1
Stelle und um.
Schritt 1.4.2.2
Stelle und um.
Schritt 1.4.2.3
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.1.2
Die Ableitung von nach ist .
Schritt 2.2.1.3
Ersetze alle durch .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.2.5
Bringe auf die linke Seite von .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 3
Bestimme die dritte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2.2
Die Ableitung von nach ist .
Schritt 3.2.2.3
Ersetze alle durch .
Schritt 3.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Mutltipliziere mit .
Schritt 3.2.6
Mutltipliziere mit .
Schritt 3.2.7
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Die Ableitung von nach ist .
Schritt 4
Bestimme die vierte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.2.2
Die Ableitung von nach ist .
Schritt 4.2.2.3
Ersetze alle durch .
Schritt 4.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.5
Mutltipliziere mit .
Schritt 4.2.6
Bringe auf die linke Seite von .
Schritt 4.2.7
Mutltipliziere mit .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.2
Die Ableitung von nach ist .
Schritt 4.3.3
Mutltipliziere mit .