Analysis Beispiele

2nd 도함수 구하기 y=(2x-3)/(2x-8)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Addiere und .
Schritt 1.2.6.2
Bringe auf die linke Seite von .
Schritt 1.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.10
Mutltipliziere mit .
Schritt 1.2.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.12
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.12.1
Addiere und .
Schritt 1.2.12.2
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1.1
Subtrahiere von .
Schritt 1.3.3.1.2
Addiere und .
Schritt 1.3.3.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.1
Mutltipliziere mit .
Schritt 1.3.3.2.2
Mutltipliziere mit .
Schritt 1.3.3.3
Addiere und .
Schritt 1.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.1.1
Faktorisiere aus heraus.
Schritt 1.3.5.1.2
Faktorisiere aus heraus.
Schritt 1.3.5.1.3
Faktorisiere aus heraus.
Schritt 1.3.5.2
Wende die Produktregel auf an.
Schritt 1.3.5.3
Potenziere mit .
Schritt 1.3.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.6.1
Faktorisiere aus heraus.
Schritt 1.3.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.6.2.1
Faktorisiere aus heraus.
Schritt 1.3.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.6.2.3
Forme den Ausdruck um.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Schreibe als um.
Schritt 2.1.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2.2
Mutltipliziere mit .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kombiniere und .
Schritt 2.3.2.2
Mutltipliziere mit .
Schritt 2.3.2.3
Kombiniere und .
Schritt 2.3.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.1
Bringe auf die linke Seite von .
Schritt 2.3.2.4.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.3.2.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.5.1
Faktorisiere aus heraus.
Schritt 2.3.2.5.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.5.2.1
Faktorisiere aus heraus.
Schritt 2.3.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.5.2.3
Forme den Ausdruck um.
Schritt 2.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Addiere und .
Schritt 2.3.6.2
Mutltipliziere mit .
Schritt 3
Bestimme die dritte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Schreibe als um.
Schritt 3.1.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2.2.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.1
Addiere und .
Schritt 3.3.5.2
Mutltipliziere mit .
Schritt 3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Kombiniere und .
Schritt 3.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Bestimme die vierte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Schreibe als um.
Schritt 4.1.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.3
Ersetze alle durch .
Schritt 4.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.5.1
Addiere und .
Schritt 4.3.5.2
Mutltipliziere mit .
Schritt 4.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.4.2
Kombiniere und .