Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schreibe als um.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Schritt 4.1
Vereinfache.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Bringe auf die linke Seite von .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kürze den gemeinsamen Teiler von und .
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze die gemeinsamen Faktoren.
Schritt 6.2.2.1
Faktorisiere aus heraus.
Schritt 6.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.3
Forme den Ausdruck um.
Schritt 6.2.2.4
Dividiere durch .
Schritt 7
Schritt 7.1
Es sei . Ermittle .
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Differenziere.
Schritt 7.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 7.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 7.1.3
Berechne .
Schritt 7.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.3.3
Mutltipliziere mit .
Schritt 7.1.4
Addiere und .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Schritt 8.1
Mutltipliziere mit .
Schritt 8.2
Bringe auf die linke Seite von .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Schritt 10.1
Kombiniere und .
Schritt 10.2
Kürze den gemeinsamen Faktor von .
Schritt 10.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2
Forme den Ausdruck um.
Schritt 10.3
Mutltipliziere mit .
Schritt 11
Das Integral von nach ist .
Schritt 12
Schritt 12.1
Ersetze alle durch .
Schritt 12.2
Ersetze alle durch .