Analysis Beispiele

Berechne das Integral Integral über (30x^5)/(4+5x^6) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schreibe als um.
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Bringe auf die linke Seite von .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Faktorisiere aus heraus.
Schritt 6.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.3
Forme den Ausdruck um.
Schritt 6.2.2.4
Dividiere durch .
Schritt 7
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 7.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 7.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.3.3
Mutltipliziere mit .
Schritt 7.1.4
Addiere und .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Mutltipliziere mit .
Schritt 8.2
Bringe auf die linke Seite von .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Kombiniere und .
Schritt 10.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2
Forme den Ausdruck um.
Schritt 10.3
Mutltipliziere mit .
Schritt 11
Das Integral von nach ist .
Schritt 12
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze alle durch .
Schritt 12.2
Ersetze alle durch .