Analysis Beispiele

Berechne das Integral Integral von pi/4 bis pi/2 über (cos(x))/(sin(x)^2) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Der genau Wert von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Der genau Wert von ist .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2
Mutltipliziere mit .
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei und .
Schritt 4.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Ändere das Vorzeichen des Exponenten durch Umschreiben der Basis als ihren Kehrwert.
Schritt 5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Potenziere mit .
Schritt 5.2.3
Potenziere mit .
Schritt 5.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2.5
Addiere und .
Schritt 5.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1
Benutze , um als neu zu schreiben.
Schritt 5.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.6.3
Kombiniere und .
Schritt 5.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.6.4.2
Forme den Ausdruck um.
Schritt 5.2.6.5
Berechne den Exponenten.
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Dividiere durch .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: