Analysis Beispiele

Berechne das Integral Integral über (v+1)/(-1-v^2) nach v
Schritt 1
Zerlege den Bruch in zwei Brüche.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.3.3
Mutltipliziere mit .
Schritt 3.1.4
Subtrahiere von .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Bringe auf die linke Seite von .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Das Integral von nach ist .
Schritt 8
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Schreibe als um.
Schritt 8.2
Faktorisiere aus heraus.
Schritt 8.3
Faktorisiere aus heraus.
Schritt 8.4
Faktorisiere aus heraus.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Schreibe als um.
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Schreibe als um.
Schritt 9.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schreibe als um.
Schritt 12
Das Integral von nach ist .
Schritt 13
Vereinfache.
Schritt 14
Ersetze alle durch .