Analysis Beispiele

Berechne das Integral Integral über x^-6 natürlicher Logarithmus von x nach x
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Potenziere mit .
Schritt 2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5
Addiere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Mutltipliziere mit .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 6.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.2.2
Mutltipliziere mit .
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Schreibe als um.
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Mutltipliziere mit .
Schritt 8.2.2
Bringe auf die linke Seite von .
Schritt 8.2.3
Mutltipliziere mit .
Schritt 8.2.4
Mutltipliziere mit .