Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 2
Schritt 2.1
Vereinfache .
Schritt 2.1.1
Wende den trigonometrischen Pythagoras an.
Schritt 2.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2
Forme den Ausdruck um.
Schritt 3
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Mutltipliziere mit .
Schritt 8.2
Setze die untere Grenze für in ein.
Schritt 8.3
Mutltipliziere mit .
Schritt 8.4
Setze die obere Grenze für in ein.
Schritt 8.5
Kürze den gemeinsamen Faktor von .
Schritt 8.5.1
Faktorisiere aus heraus.
Schritt 8.5.2
Kürze den gemeinsamen Faktor.
Schritt 8.5.3
Forme den Ausdruck um.
Schritt 8.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 8.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 9
Kombiniere und .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Das Integral von nach ist .
Schritt 12
Schritt 12.1
Berechne bei und .
Schritt 12.2
Berechne bei und .
Schritt 12.3
Addiere und .
Schritt 13
Schritt 13.1
Der genau Wert von ist .
Schritt 13.2
Der genau Wert von ist .
Schritt 13.3
Mutltipliziere mit .
Schritt 13.4
Addiere und .
Schritt 13.5
Mutltipliziere mit .
Schritt 14
Schritt 14.1
Wende das Distributivgesetz an.
Schritt 14.2
Multipliziere .
Schritt 14.2.1
Mutltipliziere mit .
Schritt 14.2.2
Mutltipliziere mit .
Schritt 14.3
Multipliziere .
Schritt 14.3.1
Mutltipliziere mit .
Schritt 14.3.2
Mutltipliziere mit .
Schritt 15
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 16