Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere.
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.3
Die Ableitung von nach ist .
Schritt 2.1.4
Subtrahiere von .
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Benutze , um als neu zu schreiben.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Schritt 6.1
Schreibe als um.
Schritt 6.2
Vereinfache.
Schritt 6.2.1
Kombiniere und .
Schritt 6.2.2
Mutltipliziere mit .
Schritt 6.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 6.2.3.1
Faktorisiere aus heraus.
Schritt 6.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 6.2.3.2.1
Faktorisiere aus heraus.
Schritt 6.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.3.2.3
Forme den Ausdruck um.
Schritt 6.2.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Ersetze alle durch .