Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Schritt 3.1
Schreibe als um.
Schritt 3.1.1
Benutze , um als neu zu schreiben.
Schritt 3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.3
Kombiniere und .
Schritt 3.1.4
Kürze den gemeinsamen Teiler von und .
Schritt 3.1.4.1
Faktorisiere aus heraus.
Schritt 3.1.4.2
Kürze die gemeinsamen Faktoren.
Schritt 3.1.4.2.1
Faktorisiere aus heraus.
Schritt 3.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.4.2.3
Forme den Ausdruck um.
Schritt 3.1.4.2.4
Dividiere durch .
Schritt 3.2
Schreibe als um.
Schritt 3.2.1
Benutze , um als neu zu schreiben.
Schritt 3.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.3
Kombiniere und .
Schritt 3.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.4.1
Faktorisiere aus heraus.
Schritt 3.2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.4.2.1
Faktorisiere aus heraus.
Schritt 3.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2.3
Forme den Ausdruck um.
Schritt 3.2.4.2.4
Dividiere durch .
Schritt 3.3
Kombiniere und .
Schritt 3.4
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.3
Forme den Ausdruck um.
Schritt 5.2.2.4
Dividiere durch .
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Schritt 9.1
Kombiniere und .
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.3
Forme den Ausdruck um.
Schritt 10
Das Integral von nach ist .
Schritt 11
Vereinfache.
Schritt 12
Schritt 12.1
Ersetze alle durch .
Schritt 12.2
Ersetze alle durch .