Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Potenziere mit .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Potenziere mit .
Schritt 2.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Schritt 3.1
Schreibe als um.
Schritt 3.1.1
Benutze , um als neu zu schreiben.
Schritt 3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.3
Kombiniere und .
Schritt 3.1.4
Kürze den gemeinsamen Teiler von und .
Schritt 3.1.4.1
Faktorisiere aus heraus.
Schritt 3.1.4.2
Kürze die gemeinsamen Faktoren.
Schritt 3.1.4.2.1
Faktorisiere aus heraus.
Schritt 3.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.4.2.3
Forme den Ausdruck um.
Schritt 3.1.4.2.4
Dividiere durch .
Schritt 3.2
Kombiniere und .
Schritt 3.3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.3
Forme den Ausdruck um.
Schritt 5.2.2.4
Dividiere durch .
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Setze die untere Grenze für in ein.
Schritt 6.3
Vereinfache.
Schritt 6.3.1
Potenziere mit .
Schritt 6.3.2
Mutltipliziere mit .
Schritt 6.4
Setze die obere Grenze für in ein.
Schritt 6.5
Vereinfache.
Schritt 6.5.1
Potenziere mit .
Schritt 6.5.2
Mutltipliziere mit .
Schritt 6.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 6.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 7
Schritt 7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Mutltipliziere mit .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schritt 11.1
Kombiniere und .
Schritt 11.2
Kürze den gemeinsamen Teiler von und .
Schritt 11.2.1
Faktorisiere aus heraus.
Schritt 11.2.2
Kürze die gemeinsamen Faktoren.
Schritt 11.2.2.1
Faktorisiere aus heraus.
Schritt 11.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 11.2.2.3
Forme den Ausdruck um.
Schritt 11.2.2.4
Dividiere durch .
Schritt 12
Das Integral von nach ist .
Schritt 13
Schritt 13.1
Berechne bei und .
Schritt 13.2
Vereinfache.
Schritt 13.2.1
Subtrahiere von .
Schritt 13.2.2
Mutltipliziere mit .
Schritt 14