Analysis Beispiele

x=-1에서의 접선 구하기 f(x)=(x^7)/7-7/(x^7) at x=-1
at
Schritt 1
Bestimme den entsprechenden -Wert zu .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze für ein.
Schritt 1.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Potenziere mit .
Schritt 1.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.1.3
Potenziere mit .
Schritt 1.2.1.4
Dividiere durch .
Schritt 1.2.1.5
Mutltipliziere mit .
Schritt 1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Mutltipliziere mit .
Schritt 1.2.5.2
Addiere und .
Schritt 2
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Kombiniere und .
Schritt 2.2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.5.2
Dividiere durch .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2
Mutltipliziere mit .
Schritt 2.3.6
Mutltipliziere mit .
Schritt 2.3.7
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.7.1
Bewege .
Schritt 2.3.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.7.3
Subtrahiere von .
Schritt 2.3.8
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Kombiniere und .
Schritt 2.5
Bestimme die Ableitung bei .
Schritt 2.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1.1
Potenziere mit .
Schritt 2.6.1.2
Potenziere mit .
Schritt 2.6.1.3
Dividiere durch .
Schritt 2.6.2
Addiere und .
Schritt 3
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Forme um.
Schritt 3.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.1.4
Mutltipliziere mit .
Schritt 3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.2.3
Kombiniere und .
Schritt 3.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.5.1
Mutltipliziere mit .
Schritt 3.3.2.5.2
Addiere und .
Schritt 4