Analysis Beispiele

Ermittle die Stammfunktion (x^2)/( Quadratwurzel von 1-x^2)
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Wende den trigonometrischen Pythagoras an.
Schritt 5.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2
Forme den Ausdruck um.
Schritt 6
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 9
Wende die Konstantenregel an.
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Mutltipliziere mit .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Kombiniere und .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Das Integral von nach ist .
Schritt 15
Vereinfache.
Schritt 16
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .
Schritt 16.3
Ersetze alle durch .
Schritt 17
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 17.1
Kombiniere und .
Schritt 17.2
Wende das Distributivgesetz an.
Schritt 17.3
Kombiniere und .
Schritt 17.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 17.4.1
Mutltipliziere mit .
Schritt 17.4.2
Mutltipliziere mit .
Schritt 18
Stelle die Terme um.
Schritt 19
Die Lösung ist die Stammfunktion der Funktion .