Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Berechne den Grenzwert.
Schritt 1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.2.1.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.1.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.1.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Multipliziere .
Schritt 1.2.3.1.1.1
Mutltipliziere mit .
Schritt 1.2.3.1.1.2
Mutltipliziere mit .
Schritt 1.2.3.1.2
Subtrahiere von .
Schritt 1.2.3.1.3
Der genau Wert von ist .
Schritt 1.2.3.1.4
Mutltipliziere mit .
Schritt 1.2.3.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Berechne den Grenzwert.
Schritt 1.3.1.1
Bringe den Grenzwert in den Logarithmus.
Schritt 1.3.1.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.1.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Schritt 1.3.3.1
Vereinfache jeden Term.
Schritt 1.3.3.1.1
Mutltipliziere mit .
Schritt 1.3.3.1.2
Mutltipliziere mit .
Schritt 1.3.3.2
Subtrahiere von .
Schritt 1.3.3.3
Der natürliche Logarithmus von ist .
Schritt 1.3.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Berechne .
Schritt 3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.1.2
Die Ableitung von nach ist .
Schritt 3.3.1.3
Ersetze alle durch .
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.6
Mutltipliziere mit .
Schritt 3.3.7
Subtrahiere von .
Schritt 3.3.8
Mutltipliziere mit .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Addiere und .
Schritt 3.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.6.2
Die Ableitung von nach ist .
Schritt 3.6.3
Ersetze alle durch .
Schritt 3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.12
Addiere und .
Schritt 3.13
Kombiniere und .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kombiniere und .
Schritt 6
Schritt 6.1
Kürze den gemeinsamen Faktor.
Schritt 6.2
Dividiere durch .
Schritt 7
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 10
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 11
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 12
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 13
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 14
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 15
Schritt 15.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 15.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 16
Schritt 16.1
Vereinfache jeden Term.
Schritt 16.1.1
Mutltipliziere mit .
Schritt 16.1.2
Mutltipliziere mit .
Schritt 16.2
Subtrahiere von .
Schritt 16.3
Mutltipliziere mit .
Schritt 16.4
Multipliziere .
Schritt 16.4.1
Mutltipliziere mit .
Schritt 16.4.2
Mutltipliziere mit .
Schritt 16.5
Subtrahiere von .
Schritt 16.6
Der genau Wert von ist .