Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Berechne .
Schritt 2.3.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.3.3
Mutltipliziere mit .
Schritt 2.3.1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.4.2
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Vereinfache.
Schritt 2.3.3.1
Wende das Distributivgesetz an.
Schritt 2.3.3.2
Mutltipliziere mit .
Schritt 2.3.3.3
Potenziere mit .
Schritt 2.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.3.5
Addiere und .
Schritt 2.3.3.6
Mutltipliziere mit .
Schritt 2.3.3.7
Mutltipliziere mit .
Schritt 2.3.3.8
Mutltipliziere mit .
Schritt 2.3.4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.9
Vereinfache.
Schritt 2.3.9.1
Vereinfache.
Schritt 2.3.9.2
Vereinfache.
Schritt 2.3.9.2.1
Mutltipliziere mit .
Schritt 2.3.9.2.2
Mutltipliziere mit .
Schritt 2.3.9.2.3
Mutltipliziere mit .
Schritt 2.3.9.2.4
Mutltipliziere mit .
Schritt 2.3.10
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.