Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Faktorisiere aus.
Schritt 2.3.2
Schreibe in um unter Verwendung des trigonometrischen Pythagoras.
Schritt 2.3.3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.3.1
Es sei . Ermittle .
Schritt 2.3.3.1.1
Differenziere .
Schritt 2.3.3.1.2
Die Ableitung von nach ist .
Schritt 2.3.3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.5
Wende die Konstantenregel an.
Schritt 2.3.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.7
Vereinfache.
Schritt 2.3.8
Ersetze alle durch .
Schritt 2.3.9
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Kombiniere und .
Schritt 3.3.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Stelle und um.
Schritt 4.3
Kombiniere Konstanten mit Plus oder Minus.
Schritt 5
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 6
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Vereinfache.
Schritt 6.2.1
Der genau Wert von ist .
Schritt 6.2.2
Mutltipliziere mit .
Schritt 6.2.3
Vereinfache den Zähler.
Schritt 6.2.3.1
Der genau Wert von ist .
Schritt 6.2.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.2.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.5
Kombiniere und .
Schritt 6.2.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.7
Vereinfache den Zähler.
Schritt 6.2.7.1
Mutltipliziere mit .
Schritt 6.2.7.2
Subtrahiere von .
Schritt 6.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2
Vereinfache die linke Seite.
Schritt 6.3.2.1
Faktorisiere aus heraus.
Schritt 6.3.2.2
Kürze die gemeinsamen Faktoren.
Schritt 6.3.2.2.1
Multipliziere mit .
Schritt 6.3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.3
Forme den Ausdruck um.
Schritt 6.3.2.2.4
Dividiere durch .
Schritt 6.3.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 6.3.2.3.1
Faktorisiere aus heraus.
Schritt 6.3.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 6.3.2.3.2.1
Faktorisiere aus heraus.
Schritt 6.3.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.3.2.3
Forme den Ausdruck um.
Schritt 6.3.2.3.2.4
Dividiere durch .
Schritt 6.3.2.4
Vereinfache den Ausdruck.
Schritt 6.3.2.4.1
Alles, was mit potenziert wird, ist .
Schritt 6.3.2.4.2
Mutltipliziere mit .
Schritt 6.3.3
Vereinfache die rechte Seite.
Schritt 6.3.3.1
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 7
Schritt 7.1
Ersetze durch .
Schritt 7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.