Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 4
Schritt 4.1
Ersetze durch .
Schritt 4.2
Ersetze durch .
Schritt 4.3
Ersetze durch .
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache den Zähler.
Schritt 4.3.2.1
Wende das Distributivgesetz an.
Schritt 4.3.2.2
Mutltipliziere mit .
Schritt 4.3.2.3
Mutltipliziere mit .
Schritt 4.3.2.4
Subtrahiere von .
Schritt 4.3.2.5
Faktorisiere aus heraus.
Schritt 4.3.2.5.1
Faktorisiere aus heraus.
Schritt 4.3.2.5.2
Faktorisiere aus heraus.
Schritt 4.3.2.5.3
Faktorisiere aus heraus.
Schritt 4.3.3
Faktorisiere aus heraus.
Schritt 4.3.3.1
Faktorisiere aus heraus.
Schritt 4.3.3.2
Faktorisiere aus heraus.
Schritt 4.3.3.3
Faktorisiere aus heraus.
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2
Forme den Ausdruck um.
Schritt 4.3.5
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.5.1
Faktorisiere aus heraus.
Schritt 4.3.5.2
Schreibe als um.
Schritt 4.3.5.3
Faktorisiere aus heraus.
Schritt 4.3.5.4
Schreibe als um.
Schritt 4.3.5.5
Kürze den gemeinsamen Faktor.
Schritt 4.3.5.6
Forme den Ausdruck um.
Schritt 4.3.6
Ersetze durch .
Schritt 4.4
Bestimme den Integrationsfaktor .
Schritt 5
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Das Integral von nach ist .
Schritt 5.3
Vereinfache.
Schritt 5.4
Vereinfache jeden Term.
Schritt 5.4.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.4.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.4.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Faktorisiere aus heraus.
Schritt 6.3.1
Faktorisiere aus heraus.
Schritt 6.3.2
Faktorisiere aus heraus.
Schritt 6.3.3
Faktorisiere aus heraus.
Schritt 6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2
Dividiere durch .
Schritt 6.5
Wende das Distributivgesetz an.
Schritt 6.6
Mutltipliziere mit .
Schritt 6.7
Mutltipliziere mit .
Schritt 6.8
Kürze den gemeinsamen Faktor von .
Schritt 6.8.1
Faktorisiere aus heraus.
Schritt 6.8.2
Kürze den gemeinsamen Faktor.
Schritt 6.8.3
Forme den Ausdruck um.
Schritt 7
Setze gleich dem Integral von .
Schritt 8
Schritt 8.1
Wende die Konstantenregel an.
Schritt 9
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 10
Setze .
Schritt 11
Schritt 11.1
Differenziere nach .
Schritt 11.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 11.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 11.5
Addiere und .
Schritt 12
Schritt 12.1
Integriere beide Seiten von .
Schritt 12.2
Berechne .
Schritt 12.3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 12.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 12.6
Wende die Konstantenregel an.
Schritt 12.7
Kombiniere und .
Schritt 12.8
Vereinfache.
Schritt 13
Setze in ein.