Analysis Beispiele

Löse die Differntialgleichung. Quadratwurzel von xdy = Quadratwurzel von ydx
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Mutltipliziere mit .
Schritt 2.2.2
Potenziere mit .
Schritt 2.2.3
Potenziere mit .
Schritt 2.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.5
Addiere und .
Schritt 2.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.1
Benutze , um als neu zu schreiben.
Schritt 2.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.6.3
Kombiniere und .
Schritt 2.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.6.4.2
Forme den Ausdruck um.
Schritt 2.2.6.5
Vereinfache.
Schritt 2.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Kombiniere und .
Schritt 2.3.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.3.3
Potenziere mit .
Schritt 2.3.4
Potenziere mit .
Schritt 2.3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.6
Addiere und .
Schritt 2.4
Ziehe Terme aus der Wurzel heraus.
Schritt 2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2
Forme den Ausdruck um.
Schritt 2.6
Mutltipliziere mit .
Schritt 2.7
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Mutltipliziere mit .
Schritt 2.7.2
Potenziere mit .
Schritt 2.7.3
Potenziere mit .
Schritt 2.7.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.7.5
Addiere und .
Schritt 2.7.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.6.1
Benutze , um als neu zu schreiben.
Schritt 2.7.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.7.6.3
Kombiniere und .
Schritt 2.7.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.6.4.2
Forme den Ausdruck um.
Schritt 2.7.6.5
Vereinfache.
Schritt 2.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Kombiniere und .
Schritt 2.8.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.8.3
Potenziere mit .
Schritt 2.8.4
Potenziere mit .
Schritt 2.8.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.8.6
Addiere und .
Schritt 2.9
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.9.1
Stelle und um.
Schritt 2.9.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.10
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.1
Kürze den gemeinsamen Faktor.
Schritt 2.10.2
Forme den Ausdruck um.
Schritt 3
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Integriere auf beiden Seiten.
Schritt 3.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Benutze , um als neu zu schreiben.
Schritt 3.2.1.2
Zerlege den Bruch in mehrere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.2.1.2.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.2.1.1
Potenziere mit .
Schritt 3.2.1.2.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.2.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.2.1.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.1.2.2.4
Subtrahiere von .
Schritt 3.2.1.3
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.2.1.3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.3.2.2
Kombiniere und .
Schritt 3.2.1.3.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 3.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Benutze , um als neu zu schreiben.
Schritt 3.3.1.2
Zerlege den Bruch in mehrere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.2.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.3.1.2.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.2.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.2.2.1.1
Potenziere mit .
Schritt 3.3.1.2.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.1.2.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.3.1.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.1.2.2.4
Subtrahiere von .
Schritt 3.3.1.3
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.3.1.3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.1.3.2.2
Kombiniere und .
Schritt 3.3.1.3.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 3.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Teile jeden Ausdruck in durch .
Schritt 4.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.2
Dividiere durch .
Schritt 4.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.3.1.2
Dividiere durch .
Schritt 4.2
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 4.3
Vereinfache den Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.1.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.1.1.1.2.2
Forme den Ausdruck um.
Schritt 4.3.1.1.2
Vereinfache.
Schritt 4.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Schreibe als um.
Schritt 4.3.2.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.2.1
Wende das Distributivgesetz an.
Schritt 4.3.2.1.2.2
Wende das Distributivgesetz an.
Schritt 4.3.2.1.2.3
Wende das Distributivgesetz an.
Schritt 4.3.2.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.1.1.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.2.1.3.1.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.2.1.3.1.1.3
Addiere und .
Schritt 4.3.2.1.3.1.1.4
Dividiere durch .
Schritt 4.3.2.1.3.1.2
Vereinfache .
Schritt 4.3.2.1.3.1.3
Kombiniere und .
Schritt 4.3.2.1.3.1.4
Kombiniere und .
Schritt 4.3.2.1.3.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.1.5.1
Mutltipliziere mit .
Schritt 4.3.2.1.3.1.5.2
Potenziere mit .
Schritt 4.3.2.1.3.1.5.3
Potenziere mit .
Schritt 4.3.2.1.3.1.5.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.2.1.3.1.5.5
Addiere und .
Schritt 4.3.2.1.3.1.5.6
Mutltipliziere mit .
Schritt 4.3.2.1.3.2
Addiere und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.2.1
Stelle und um.
Schritt 4.3.2.1.3.2.2
Addiere und .
Schritt 4.3.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.4.2
Forme den Ausdruck um.
Schritt 4.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Bewege .
Schritt 4.4.2
Stelle und um.
Schritt 5
Vereinfache die Konstante der Integration.