Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Dividiere durch .
Schritt 1.3
Faktorisiere aus heraus.
Schritt 1.4
Stelle und um.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Zerlege den Bruch in mehrere Brüche.
Schritt 2.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2
Dividiere durch .
Schritt 2.2.4
Wende die Konstantenregel an.
Schritt 2.2.5
Das Integral von nach ist .
Schritt 2.2.6
Vereinfache.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Kombiniere und .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.5
Vereinfache den Zähler.
Schritt 3.5.1
Faktorisiere aus heraus.
Schritt 3.5.1.1
Faktorisiere aus heraus.
Schritt 3.5.1.2
Faktorisiere aus heraus.
Schritt 3.5.1.3
Faktorisiere aus heraus.
Schritt 3.5.2
Wende das Distributivgesetz an.
Schritt 3.5.3
Mutltipliziere mit .
Schritt 3.6
Multipliziere .
Schritt 3.6.1
Kombiniere und .
Schritt 3.6.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.6.2.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.6.2.2.1
Subtrahiere von .
Schritt 3.6.2.2.2
Addiere und .
Schritt 3.7
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 3.8
Kürze den gemeinsamen Faktor von .
Schritt 3.8.1
Kürze den gemeinsamen Faktor.
Schritt 3.8.2
Forme den Ausdruck um.
Schritt 3.9
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Wende die Konstantenregel an.
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .