Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Das Integral von nach ist .
Schritt 2.2.4
Vereinfache.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.4.1
Es sei . Ermittle .
Schritt 2.3.4.1.1
Differenziere .
Schritt 2.3.4.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4.1.4
Mutltipliziere mit .
Schritt 2.3.4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.6
Vereinfache.
Schritt 2.3.6.1
Mutltipliziere mit .
Schritt 2.3.6.2
Mutltipliziere mit .
Schritt 2.3.7
Das Integral von nach ist .
Schritt 2.3.8
Vereinfache.
Schritt 2.3.9
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.