Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Entferne die Klammern.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Schritt 3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.2
Multipliziere die Exponenten in .
Schritt 3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3
Subtrahiere von .
Schritt 4.4
Potenziere mit .
Schritt 4.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.6
Subtrahiere von .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Das Integral von nach ist .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schritt 11.1
Es sei . Ermittle .
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Mutltipliziere mit .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Schritt 12.1
Kombiniere und .
Schritt 12.2
Kombiniere und .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Schritt 14.1
Kombiniere und .
Schritt 14.2
Kürze den gemeinsamen Teiler von und .
Schritt 14.2.1
Faktorisiere aus heraus.
Schritt 14.2.2
Kürze die gemeinsamen Faktoren.
Schritt 14.2.2.1
Faktorisiere aus heraus.
Schritt 14.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 14.2.2.3
Forme den Ausdruck um.
Schritt 14.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 15
Das Integral von nach ist .
Schritt 16
Vereinfache.
Schritt 17
Ersetze alle durch .
Schritt 18
Stelle die Terme um.