Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.6
Vereinfache.
Schritt 1.1.6.1
Addiere und .
Schritt 1.1.6.2
Stelle die Terme um.
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache jeden Term.
Schritt 1.3.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.2
Addiere und .
Schritt 1.3.3
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Vereinfache jeden Term.
Schritt 1.5.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.5.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.5.2
Addiere und .
Schritt 1.5.3
Addiere und .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Berechne bei und .
Schritt 6
Schritt 6.1
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 6.2
Kombiniere und .
Schritt 7
Schritt 7.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.3
Dividiere durch .
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 9