Analysis Beispiele

Finde das absolute Maximum und Minimum im Intervall h(x)=e^(x^2-4) on -2 , 2
on ,
Schritt 1
Ermittle die kritischen Punkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.1.1.1.3
Ersetze alle durch .
Schritt 1.1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.2.4
Addiere und .
Schritt 1.1.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.1
Stelle die Faktoren von um.
Schritt 1.1.1.3.2
Stelle die Faktoren in um.
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.3
Setze gleich .
Schritt 1.2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Setze gleich .
Schritt 1.2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 1.2.4.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 1.2.4.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 1.2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.2
Subtrahiere von .
Schritt 1.4.1.2.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.2
Liste all Punkte auf.
Schritt 2
Werte die enthaltenen Endpunkte aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Potenziere mit .
Schritt 2.1.2.2
Subtrahiere von .
Schritt 2.1.2.3
Alles, was mit potenziert wird, ist .
Schritt 2.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Potenziere mit .
Schritt 2.2.2.2
Subtrahiere von .
Schritt 2.2.2.3
Alles, was mit potenziert wird, ist .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4