Analysis Beispiele

Berechne das Integral Integral über 2xsec(x^2)tan(x^2) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.2
Die Ableitung von nach ist .
Schritt 2.1.2.3
Ersetze alle durch .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.2
Stelle die Faktoren von um.
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Wende die Konstantenregel an.
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kombiniere und .
Schritt 4.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.2
Forme den Ausdruck um.
Schritt 4.2.3
Mutltipliziere mit .
Schritt 4.3
Ersetze alle durch .