Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere unter Anwendung der Potenzregel.
Schritt 1.2.1
Multipliziere die Exponenten in .
Schritt 1.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.1.2
Bringe auf die linke Seite von .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Stelle die Terme um.
Schritt 1.4.2
Faktorisiere aus heraus.
Schritt 1.4.2.1
Faktorisiere aus heraus.
Schritt 1.4.2.2
Multipliziere mit .
Schritt 1.4.2.3
Faktorisiere aus heraus.
Schritt 1.4.3
Kürze den gemeinsamen Teiler von und .
Schritt 1.4.3.1
Faktorisiere aus heraus.
Schritt 1.4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 1.4.3.2.1
Multipliziere mit .
Schritt 1.4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.3.2.3
Forme den Ausdruck um.
Schritt 1.4.3.2.4
Dividiere durch .
Schritt 1.4.4
Wende das Distributivgesetz an.
Schritt 1.4.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.6
Mutltipliziere mit .
Schritt 1.4.7
Stelle die Faktoren in um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Mutltipliziere mit .
Schritt 2.2.8
Bringe auf die linke Seite von .
Schritt 2.2.9
Schreibe als um.
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.1.3
Ersetze alle durch .
Schritt 2.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.3.5
Bringe auf die linke Seite von .
Schritt 2.3.6
Schreibe als um.
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Vereine die Terme
Schritt 2.4.2.1
Mutltipliziere mit .
Schritt 2.4.2.2
Mutltipliziere mit .
Schritt 2.4.2.3
Subtrahiere von .
Schritt 2.4.3
Stelle die Terme um.
Schritt 2.4.4
Stelle die Faktoren in um.