Analysis Beispiele

미분 구하기 - d/dx Quadratwurzel von 1+sin(x)^2
Schritt 1
Benutze , um als neu zu schreiben.
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4
Kombiniere und .
Schritt 5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Subtrahiere von .
Schritt 7
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kombiniere und .
Schritt 7.2.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 7.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 7.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 7.5
Addiere und .
Schritt 8
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 8.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3
Ersetze alle durch .
Schritt 9
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Kombiniere und .
Schritt 9.2
Kombiniere und .
Schritt 9.3
Bringe auf die linke Seite von .
Schritt 9.4
Kürze den gemeinsamen Faktor.
Schritt 9.5
Forme den Ausdruck um.
Schritt 10
Die Ableitung von nach ist .
Schritt 11
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Kombiniere und .
Schritt 11.2
Stelle die Terme um.