Analysis Beispiele

Ermittle den Maximum-/Minimumwert y=ax^2+bx+c
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Addiere und .
Schritt 1.4.2
Addiere und .
Schritt 2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Addiere und .
Schritt 4.1.4.2
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Schreibe als um.
Schritt 5.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.3.3
Plus oder Minus ist .
Schritt 6
Kritische Punkte zum auswerten.
Schritt 7
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 8
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 9