Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Schritt 1.2.1
Vereinfache den Nenner.
Schritt 1.2.1.1
Schreibe als um.
Schritt 1.2.1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.2.3
Vereinfache den Zähler.
Schritt 1.2.3.1
Schreibe als um.
Schritt 1.2.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.4
Kürze den gemeinsamen Faktor von .
Schritt 1.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2
Forme den Ausdruck um.
Schritt 1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2
Dividiere durch .
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.2
Wende die Konstantenregel an.
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.5
Vereinfache.
Schritt 2.2.6
Stelle die Terme um.
Schritt 2.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.