Analysis Beispiele

Berechne den Grenzwert Grenzwert von (e^x+x)^(1/x), wenn x gegen infinity geht
Schritt 1
Wende die Logarithmengesetze an, um den Grenzwert zu vereinfachen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bringe den Grenzwert in den Exponenten.
Schritt 2.2
Kombiniere und .
Schritt 3
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Da der Logarithmus gegen unendlich geht, geht der Wert gegen .
Schritt 3.1.3
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 3.1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Die Ableitung von nach ist .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.4
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.6.1
Stelle die Faktoren von um.
Schritt 3.3.6.2
Mutltipliziere mit .
Schritt 3.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.5
Mutltipliziere mit .
Schritt 4
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 4.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.1.2.2
Da der Exponent gegen geht, nähert sich die Größe an.
Schritt 4.1.2.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.1.2.4
Unendlich plus oder minus eine Zahl ist Unendlich.
Schritt 4.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.1.3.2
Da der Exponent gegen geht, nähert sich die Größe an.
Schritt 4.1.3.3
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 4.1.3.4
Unendlich plus Unendlich ist Unendlich.
Schritt 4.1.3.5
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 4.1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 4.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 4.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Differenziere den Zähler und Nenner.
Schritt 4.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.7
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 5.1.2
Da der Exponent gegen geht, nähert sich die Größe an.
Schritt 5.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 5.1.3.2
Da der Exponent gegen geht, nähert sich die Größe an.
Schritt 5.1.3.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5.1.3.4
Unendlich plus oder minus eine Zahl ist Unendlich.
Schritt 5.1.3.5
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 5.1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 5.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 5.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Differenziere den Zähler und Nenner.
Schritt 5.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 5.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.3.4
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 5.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.3.6
Addiere und .
Schritt 5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2
Forme den Ausdruck um.
Schritt 6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7
Vereinfache.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: