Analysis Beispiele

dy/dx 구하기 5/(x^3)+3 vierte Wurzel von y=18
Schritt 1
Benutze , um als neu zu schreiben.
Schritt 2
Differenziere beide Seiten der Gleichung.
Schritt 3
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Schreibe als um.
Schritt 3.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3.3
Ersetze alle durch .
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.5.2
Mutltipliziere mit .
Schritt 3.2.6
Mutltipliziere mit .
Schritt 3.2.7
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.7.1
Bewege .
Schritt 3.2.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.7.3
Subtrahiere von .
Schritt 3.2.8
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Schreibe als um.
Schritt 3.3.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.5
Kombiniere und .
Schritt 3.3.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.7.1
Mutltipliziere mit .
Schritt 3.3.7.2
Subtrahiere von .
Schritt 3.3.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.9
Kombiniere und .
Schritt 3.3.10
Kombiniere und .
Schritt 3.3.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.3.12
Kombiniere und .
Schritt 3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Kombiniere und .
Schritt 3.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Addiere zu beiden Seiten der Gleichung.
Schritt 6.2
Multipliziere beide Seiten mit .
Schritt 6.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.1.2.2
Forme den Ausdruck um.
Schritt 6.3.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.1.3.2
Forme den Ausdruck um.
Schritt 6.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.3.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.2.1
Kombiniere und .
Schritt 6.3.2.1.2.2
Mutltipliziere mit .
Schritt 6.3.2.1.3
Kombiniere und .
Schritt 6.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Teile jeden Ausdruck in durch .
Schritt 6.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.2
Dividiere durch .
Schritt 6.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.4.3.2
Kombinieren.
Schritt 6.4.3.3
Faktorisiere aus heraus.
Schritt 6.4.3.4
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.4.1
Faktorisiere aus heraus.
Schritt 6.4.3.4.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.3.4.3
Forme den Ausdruck um.
Schritt 6.4.3.5
Mutltipliziere mit .
Schritt 7
Ersetze durch .