Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3.3
Ersetze alle durch .
Schritt 3.4
Differenziere.
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Vereinfache durch Herausfaktorisieren.
Schritt 3.4.3.1
Mutltipliziere mit .
Schritt 3.4.3.2
Bringe auf die linke Seite von .
Schritt 3.4.3.3
Faktorisiere das negative Vorzeichen heraus.
Schritt 3.4.3.4
Vereinfache den Ausdruck.
Schritt 3.4.3.4.1
Schreibe als um.
Schritt 3.4.3.4.2
Multipliziere die Exponenten in .
Schritt 3.4.3.4.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.3.4.2.2
Mutltipliziere mit .
Schritt 3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Vereinfache.
Schritt 3.8.1
Wende das Distributivgesetz an.
Schritt 3.8.2
Mutltipliziere mit .
Schritt 3.8.3
Stelle die Terme um.
Schritt 3.8.4
Stelle die Faktoren in um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .