Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.2
Addiere und .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache jeden Term.
Schritt 1.3.1.1
Potenziere mit .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 1.3.3
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Vereinfache jeden Term.
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.2
Addiere und .
Schritt 1.5.3
Addiere und .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Schritt 4.1
Benutze , um als neu zu schreiben.
Schritt 4.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 4.3
Multipliziere die Exponenten in .
Schritt 4.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Berechne bei und .
Schritt 7
Schritt 7.1
Wende das Distributivgesetz an.
Schritt 7.2
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1
Faktorisiere aus heraus.
Schritt 7.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.3
Forme den Ausdruck um.
Schritt 7.3
Kürze den gemeinsamen Faktor von .
Schritt 7.3.1
Faktorisiere aus heraus.
Schritt 7.3.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.3
Forme den Ausdruck um.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 9