Analysis Beispiele

Berechne das Integral Integral über (3/( Quadratwurzel von x)-(x Quadratwurzel von x)/4) nach x
Schritt 1
Entferne die Klammern.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Potenziere mit .
Schritt 2.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.4
Addiere und .
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Benutze , um als neu zu schreiben.
Schritt 5.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 5.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.2
Kombiniere und .
Schritt 5.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache.
Schritt 10.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Kombiniere und .
Schritt 10.2.2
Mutltipliziere mit .
Schritt 10.2.3
Mutltipliziere mit .
Schritt 10.2.4
Faktorisiere aus heraus.
Schritt 10.2.5
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.5.1
Faktorisiere aus heraus.
Schritt 10.2.5.2
Kürze den gemeinsamen Faktor.
Schritt 10.2.5.3
Forme den Ausdruck um.
Schritt 11
Stelle die Terme um.