Analysis Beispiele

Berechne das Integral Integral über (w^3+w^2+w)/(w^3) nach w
Schritt 1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Potenziere mit .
Schritt 1.1.4
Faktorisiere aus heraus.
Schritt 1.1.5
Faktorisiere aus heraus.
Schritt 1.1.6
Faktorisiere aus heraus.
Schritt 1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2
Mutltipliziere mit .
Schritt 3
Multipliziere aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4
Subtrahiere von .
Schritt 3.5
Alles, was mit potenziert wird, ist .
Schritt 3.6
Potenziere mit .
Schritt 3.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.8
Subtrahiere von .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Stelle und um.
Schritt 3.11
Bewege .
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Das Integral von nach ist .
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Wende die Konstantenregel an.
Schritt 8
Vereinfache.