Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 6
Bringe den Grenzwert in den Exponenten.
Schritt 7
Bringe den Grenzwert in den Exponenten.
Schritt 8
Schritt 8.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 8.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 8.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 9
Schritt 9.1
Vereinfache den Zähler.
Schritt 9.1.1
Der genau Wert von ist .
Schritt 9.1.2
Alles, was mit potenziert wird, ist .
Schritt 9.1.3
Mutltipliziere mit .
Schritt 9.1.4
Addiere und .
Schritt 9.2
Alles, was mit potenziert wird, ist .
Schritt 9.3
Kürze den gemeinsamen Faktor von .
Schritt 9.3.1
Faktorisiere aus heraus.
Schritt 9.3.2
Kürze den gemeinsamen Faktor.
Schritt 9.3.3
Forme den Ausdruck um.