Algebra Beispiele

Löse durch Anwendung der Quadratformel 6/x+(x-3)/4=2
Schritt 1
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Zerlege den Bruch in zwei Brüche.
Schritt 1.1.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.2
Kombiniere und .
Schritt 1.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Mutltipliziere mit .
Schritt 1.3.4.2
Subtrahiere von .
Schritt 1.3.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.5
hat Faktoren von und .
Schritt 2.6
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.8
Mutltipliziere mit .
Schritt 2.9
Der Teiler von ist selbst.
occurs time.
Schritt 2.10
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.11
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Kombiniere und .
Schritt 3.2.1.2.2
Mutltipliziere mit .
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.2
Forme den Ausdruck um.
Schritt 3.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.5.2
Forme den Ausdruck um.
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 3.2.1.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.7.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.7.2
Faktorisiere aus heraus.
Schritt 3.2.1.7.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.7.4
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Mutltipliziere mit .
Schritt 3.3.1.2
Mutltipliziere mit .
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Setze gleich .
Schritt 4.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Setze gleich .
Schritt 4.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.5
Die endgültige Lösung sind alle Werte, die wahr machen.