Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Vereinfache die linke Seite.
Schritt 1.1.1
Vereinfache .
Schritt 1.1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.1.2.1
Bewege .
Schritt 1.1.1.2.2
Mutltipliziere mit .
Schritt 1.1.1.3
Mutltipliziere mit .
Schritt 1.2
Bringe alle Ausdrücke auf die linke Seite der Gleichung.
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3
Subtrahiere von .
Schritt 2
Die Diskriminante einer quadratischen Gleichung ist der Ausdruck unter der Wurzel der Quadratformel.
Schritt 3
Setze die Werte von , und ein.
Schritt 4
Schritt 4.1
Vereinfache jeden Term.
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Multipliziere .
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Mutltipliziere mit .
Schritt 4.2
Addiere und .
Schritt 5
Die Art der Wurzeln einer quadratischen Gleichung kann, in Abhängigkeit vom Wert der Diskriminante , in eine von drei Kategorien fallen:
bedeutet, es gibt verschiedene reelle Wurzeln.
bedeutet, es gibt mehrfache reelle Wurzeln oder verschiedene reelle Wurzeln.
bedeutet, es gibt keine reellen Wurzeln, aber komplexe.
Da die Diskriminante größer als ist, gibt es zwei reelle Wurzeln.
Zwei reelle Wurzeln