Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Entferne die Klammern.
Schritt 2.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Wende das Distributivgesetz an.
Schritt 3.3.2
Vereinfache.
Schritt 3.3.2.1
Mutltipliziere mit .
Schritt 3.3.2.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.2.3.1
Subtrahiere von .
Schritt 4.2.3.2
Addiere und .
Schritt 4.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.3.1
Teile jeden Ausdruck in durch .
Schritt 4.3.2
Vereinfache die linke Seite.
Schritt 4.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 4.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.2.2
Dividiere durch .
Schritt 4.3.3
Vereinfache die rechte Seite.
Schritt 4.3.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.3.3.2
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.3.2.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.3.2.2.1
Potenziere mit .
Schritt 4.3.3.2.2.2
Faktorisiere aus heraus.
Schritt 4.3.3.2.2.3
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.2.4
Forme den Ausdruck um.
Schritt 4.3.3.2.2.5
Dividiere durch .