Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 1.1.3
Schreibe das Polynom neu.
Schritt 1.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 1.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.3
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.3.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.3.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.4
Vereinfache Terme.
Schritt 1.4.1
Kombinieren.
Schritt 1.4.2
Kürze den gemeinsamen Teiler von und .
Schritt 1.4.2.1
Faktorisiere aus heraus.
Schritt 1.4.2.2
Kürze die gemeinsamen Faktoren.
Schritt 1.4.2.2.1
Faktorisiere aus heraus.
Schritt 1.4.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.3
Forme den Ausdruck um.
Schritt 1.4.3
Kürze den gemeinsamen Faktor von .
Schritt 1.4.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.3.2
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Forme den Ausdruck um.
Schritt 3.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.2.2.1
Wende das Distributivgesetz an.
Schritt 3.2.2.2
Wende das Distributivgesetz an.
Schritt 3.2.2.3
Wende das Distributivgesetz an.
Schritt 3.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.2.3.1
Vereinfache jeden Term.
Schritt 3.2.3.1.1
Mutltipliziere mit .
Schritt 3.2.3.1.2
Bringe auf die linke Seite von .
Schritt 3.2.3.1.3
Mutltipliziere mit .
Schritt 3.2.3.2
Addiere und .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 4
Schreibe die Gleichung als um.