Algebra Beispiele

Ermittle die Umkehrfunktion f(x)=1/3 logarithmische Basis 4 von x
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Kombiniere und .
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2.2
Forme den Ausdruck um.
Schritt 3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.5
Schreibe die Gleichung als um.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.4
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.2.6
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.6.2.2
Forme den Ausdruck um.
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 5.3.4
Die logarithmische Basis von ist .
Schritt 5.3.5
Mutltipliziere mit .
Schritt 5.3.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.1
Faktorisiere aus heraus.
Schritt 5.3.6.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.3
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .