Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Kombiniere und .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.3.4
Kombiniere und .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Kombiniere und .
Schritt 2.3.7
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.7.1
Faktorisiere aus heraus.
Schritt 2.3.7.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.7.2.1
Faktorisiere aus heraus.
Schritt 2.3.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.7.2.3
Forme den Ausdruck um.
Schritt 2.3.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Kombiniere und .
Schritt 3.2.4
Mutltipliziere mit .
Schritt 3.2.5
Kombiniere und .
Schritt 3.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.6.1
Faktorisiere aus heraus.
Schritt 3.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.6.2.1
Faktorisiere aus heraus.
Schritt 3.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.6.2.3
Forme den Ausdruck um.
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.3.4
Kombiniere und .
Schritt 3.3.5
Mutltipliziere mit .
Schritt 3.3.6
Kombiniere und .
Schritt 3.3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2
Berechne .
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Kombiniere und .
Schritt 5.1.2.4
Kombiniere und .
Schritt 5.1.3
Berechne .
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.3.4
Kombiniere und .
Schritt 5.1.3.5
Mutltipliziere mit .
Schritt 5.1.3.6
Kombiniere und .
Schritt 5.1.3.7
Kürze den gemeinsamen Teiler von und .
Schritt 5.1.3.7.1
Faktorisiere aus heraus.
Schritt 5.1.3.7.2
Kürze die gemeinsamen Faktoren.
Schritt 5.1.3.7.2.1
Faktorisiere aus heraus.
Schritt 5.1.3.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.7.2.3
Forme den Ausdruck um.
Schritt 5.1.3.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 6.2.1
Multipliziere jeden Term in mit .
Schritt 6.2.2
Vereinfache die linke Seite.
Schritt 6.2.2.1
Vereinfache jeden Term.
Schritt 6.2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.1.2
Forme den Ausdruck um.
Schritt 6.2.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.2.2.1.2.2
Faktorisiere aus heraus.
Schritt 6.2.2.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.2.4
Forme den Ausdruck um.
Schritt 6.2.2.1.3
Mutltipliziere mit .
Schritt 6.2.3
Vereinfache die rechte Seite.
Schritt 6.2.3.1
Mutltipliziere mit .
Schritt 6.3
Faktorisiere aus heraus.
Schritt 6.3.1
Faktorisiere aus heraus.
Schritt 6.3.2
Faktorisiere aus heraus.
Schritt 6.3.3
Faktorisiere aus heraus.
Schritt 6.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.5
Setze gleich und löse nach auf.
Schritt 6.5.1
Setze gleich .
Schritt 6.5.2
Löse nach auf.
Schritt 6.5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6.5.2.2
Vereinfache .
Schritt 6.5.2.2.1
Schreibe als um.
Schritt 6.5.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.5.2.2.3
Plus oder Minus ist .
Schritt 6.6
Setze gleich und löse nach auf.
Schritt 6.6.1
Setze gleich .
Schritt 6.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Schritt 10.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.2
Vereinfache jeden Term.
Schritt 10.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.2.2
Mutltipliziere mit .
Schritt 10.2.3
Mutltipliziere mit .
Schritt 10.3
Vereinfache den Ausdruck.
Schritt 10.3.1
Addiere und .
Schritt 10.3.2
Dividiere durch .
Schritt 11
Schritt 11.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 11.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 11.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2.2
Vereinfache das Ergebnis.
Schritt 11.2.2.1
Vereinfache jeden Term.
Schritt 11.2.2.1.1
Potenziere mit .
Schritt 11.2.2.1.2
Mutltipliziere mit .
Schritt 11.2.2.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 11.2.2.1.4
Potenziere mit .
Schritt 11.2.2.1.5
Mutltipliziere mit .
Schritt 11.2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.2.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 11.2.2.3.1
Mutltipliziere mit .
Schritt 11.2.2.3.2
Mutltipliziere mit .
Schritt 11.2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.2.2.5
Vereinfache den Zähler.
Schritt 11.2.2.5.1
Mutltipliziere mit .
Schritt 11.2.2.5.2
Subtrahiere von .
Schritt 11.2.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 11.2.2.7
Die endgültige Lösung ist .
Schritt 11.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 11.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.3.2
Vereinfache das Ergebnis.
Schritt 11.3.2.1
Vereinfache jeden Term.
Schritt 11.3.2.1.1
Vereinfache den Zähler.
Schritt 11.3.2.1.1.1
Schreibe als um.
Schritt 11.3.2.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 11.3.2.1.1.3
Addiere und .
Schritt 11.3.2.1.2
Potenziere mit .
Schritt 11.3.2.1.3
Vereinfache den Zähler.
Schritt 11.3.2.1.3.1
Schreibe als um.
Schritt 11.3.2.1.3.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 11.3.2.1.3.3
Addiere und .
Schritt 11.3.2.1.4
Potenziere mit .
Schritt 11.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 11.3.2.3.1
Mutltipliziere mit .
Schritt 11.3.2.3.2
Mutltipliziere mit .
Schritt 11.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.3.2.5
Vereinfache den Zähler.
Schritt 11.3.2.5.1
Mutltipliziere mit .
Schritt 11.3.2.5.2
Subtrahiere von .
Schritt 11.3.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 11.3.2.7
Die endgültige Lösung ist .
Schritt 11.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 11.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.4.2
Vereinfache das Ergebnis.
Schritt 11.4.2.1
Vereinfache jeden Term.
Schritt 11.4.2.1.1
Potenziere mit .
Schritt 11.4.2.1.2
Mutltipliziere mit .
Schritt 11.4.2.1.3
Dividiere durch .
Schritt 11.4.2.1.4
Potenziere mit .
Schritt 11.4.2.1.5
Mutltipliziere mit .
Schritt 11.4.2.1.6
Dividiere durch .
Schritt 11.4.2.1.7
Mutltipliziere mit .
Schritt 11.4.2.2
Subtrahiere von .
Schritt 11.4.2.3
Die endgültige Lösung ist .
Schritt 11.5
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Schritt 11.6
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
ist ein lokales Minimum
Schritt 12