Algebra Beispiele

Bestimme die Funktionsvorschrift table[[x,y],[0,36500],[5,53600],[10,78800]]
Schritt 1
Prüfe, ob die Funktionsregel linear ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um zu ermitteln, ob die Tabelle einer Funktionsregel folgt, prüfe, ob die Werte der linearen Form folgen.
Schritt 1.2
Erzeuge eine Menge von Gleichungen aus der Tabelle, sodass .
Schritt 1.3
Berechne die Werte von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Schreibe die Gleichung als um.
Schritt 1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Ersetze alle in durch .
Schritt 1.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.1.1
Entferne die Klammern.
Schritt 1.3.2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.2.1
Bringe auf die linke Seite von .
Schritt 1.3.2.3
Ersetze alle in durch .
Schritt 1.3.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.1.1
Entferne die Klammern.
Schritt 1.3.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.2.1
Bringe auf die linke Seite von .
Schritt 1.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Schreibe die Gleichung als um.
Schritt 1.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.3.2.2
Subtrahiere von .
Schritt 1.3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 1.3.3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.3.2.1.2
Dividiere durch .
Schritt 1.3.3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.3.3.1
Dividiere durch .
Schritt 1.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Ersetze alle in durch .
Schritt 1.3.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.2.1.1
Mutltipliziere mit .
Schritt 1.3.4.2.1.2
Addiere und .
Schritt 1.3.5
Da nicht wahr ist, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 1.4
Da für die entsprechenden -Werte , ist die Funktion nicht linear.
Die Funktion ist nicht linear
Die Funktion ist nicht linear
Schritt 2
Prüfe, ob die Funktionsregel quadratisch ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um zu ermitteln, ob der Tabelle eine Funktionsregel zugrunde liegt, prüfe, ob die Werte der Form folgen.
Schritt 2.2
Erzeuge einen Menge mit Gleichungen aus der Tabelle, sodass .
Schritt 2.3
Berechne die Werte von , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Schreibe die Gleichung als um.
Schritt 2.3.1.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.3.1.2.1.2
Mutltipliziere mit .
Schritt 2.3.1.2.2
Addiere und .
Schritt 2.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Ersetze alle in durch .
Schritt 2.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1.1
Entferne die Klammern.
Schritt 2.3.2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1.1
Potenziere mit .
Schritt 2.3.2.2.2.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.2.2.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2.3
Ersetze alle in durch .
Schritt 2.3.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.1.1
Entferne die Klammern.
Schritt 2.3.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.2.1.1
Potenziere mit .
Schritt 2.3.2.4.2.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.4.2.1.3
Bringe auf die linke Seite von .
Schritt 2.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Schreibe die Gleichung als um.
Schritt 2.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.3.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.3.2.3
Subtrahiere von .
Schritt 2.3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.3.2.1.2
Dividiere durch .
Schritt 2.3.3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.3.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.3.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.3.3.1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.3.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.3.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.3.3.1.1.2.3
Forme den Ausdruck um.
Schritt 2.3.3.3.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.3.3.3.1.3
Dividiere durch .
Schritt 2.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Ersetze alle in durch .
Schritt 2.3.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.3.4.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.4.2.1.1.2.2
Faktorisiere aus heraus.
Schritt 2.3.4.2.1.1.2.3
Faktorisiere aus heraus.
Schritt 2.3.4.2.1.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 2.3.4.2.1.1.2.5
Forme den Ausdruck um.
Schritt 2.3.4.2.1.1.3
Kombiniere und .
Schritt 2.3.4.2.1.1.4
Mutltipliziere mit .
Schritt 2.3.4.2.1.1.5
Mutltipliziere mit .
Schritt 2.3.4.2.1.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.4.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.4.2.1.3
Kombiniere und .
Schritt 2.3.4.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.4.2.1.5
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.5.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 2.3.4.2.1.5.2
Mutltipliziere mit .
Schritt 2.3.4.2.1.5.3
Mutltipliziere mit .
Schritt 2.3.4.2.1.5.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 2.3.4.2.1.5.5
Mutltipliziere mit .
Schritt 2.3.4.2.1.5.6
Mutltipliziere mit .
Schritt 2.3.4.2.1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.4.2.1.7
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.7.1
Mutltipliziere mit .
Schritt 2.3.4.2.1.7.2
Mutltipliziere mit .
Schritt 2.3.4.2.1.7.3
Mutltipliziere mit .
Schritt 2.3.4.2.1.8
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.8.1
Addiere und .
Schritt 2.3.4.2.1.8.2
Addiere und .
Schritt 2.3.4.2.1.8.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.8.3.1
Faktorisiere aus heraus.
Schritt 2.3.4.2.1.8.3.2
Faktorisiere aus heraus.
Schritt 2.3.4.2.1.8.3.3
Faktorisiere aus heraus.
Schritt 2.3.5
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Schreibe die Gleichung als um.
Schritt 2.3.5.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.3.5.3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.3.1.1.1.2
Forme den Ausdruck um.
Schritt 2.3.5.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.3.1.1.2.2
Forme den Ausdruck um.
Schritt 2.3.5.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.5.3.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.3.2.1.1.3
Forme den Ausdruck um.
Schritt 2.3.5.3.2.1.2
Mutltipliziere mit .
Schritt 2.3.5.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.5.4.2
Subtrahiere von .
Schritt 2.3.6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Ersetze alle in durch .
Schritt 2.3.6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1.1.1
Dividiere durch .
Schritt 2.3.6.2.1.1.2
Mutltipliziere mit .
Schritt 2.3.6.2.1.2
Addiere und .
Schritt 2.3.7
Liste alle Lösungen auf.
Schritt 2.4
Berechne den Wert von für jeden -Wert in der Tabelle und vergleiche diesen Wert mit dem gegebenen -Wert in der Tabelle.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Berechne den Wert von so, dass , wenn , , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.4.1.1.2
Mutltipliziere mit .
Schritt 2.4.1.1.3
Mutltipliziere mit .
Schritt 2.4.1.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.2.1
Addiere und .
Schritt 2.4.1.2.2
Addiere und .
Schritt 2.4.2
Wenn die Tabelle eine quadratische Funktionsregel hat, gilt für den korrespondierenden -Wert, . Die Tabelle besteht diesen Test, da und .
Schritt 2.4.3
Berechne den Wert von so, dass , wenn , , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1.1
Potenziere mit .
Schritt 2.4.3.1.2
Mutltipliziere mit .
Schritt 2.4.3.1.3
Mutltipliziere mit .
Schritt 2.4.3.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.2.1
Addiere und .
Schritt 2.4.3.2.2
Addiere und .
Schritt 2.4.4
Wenn die Tabelle eine quadratische Funktionsregel hat, gilt für den korrespondierenden -Wert, . Die Tabelle besteht diesen Test, da und .
Schritt 2.4.5
Berechne den Wert von so, dass , wenn , , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.5.1
Potenziere mit .
Schritt 2.4.5.2
Move the decimal point in to the left by place and increase the power of by .
Schritt 2.4.5.3
Faktorisiere aus heraus.
Schritt 2.4.5.4
Addiere und .
Schritt 2.4.5.5
Move the decimal point in to the left by places and increase the power of by .
Schritt 2.4.5.6
Convert to scientific notation.
Schritt 2.4.5.7
Faktorisiere aus heraus.
Schritt 2.4.5.8
Addiere und .
Schritt 2.4.6
Wenn die Tabelle eine quadratische Funktionsregel hat, gilt für den korrespondierenden -Wert, . Diesen Test besteht die Tabelle nicht, da und . Die Funktionsregel kann nicht quadratisch sein.
Schritt 2.4.7
Da für die entsprechenden -Werte , ist die Funktion nicht quadratisch.
Die Funktion ist nicht quadratisch
Die Funktion ist nicht quadratisch
Die Funktion ist nicht quadratisch
Schritt 3
Es gibt keine Werte für , , oder in den Gleichungen oder , welche für jedes Paar von und passen.
Die Wertetabelle hat keine Funktionsregel, die linear oder quadratisch ist.