Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Der genau Wert von ist .
Schritt 1.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.1.2
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 1.1.3
Wende das Additionstheorem der Trigonometrie an.
Schritt 1.1.4
Der genau Wert von ist .
Schritt 1.1.5
Der genau Wert von ist .
Schritt 1.1.6
Der genau Wert von ist .
Schritt 1.1.7
Der genau Wert von ist .
Schritt 1.1.8
Vereinfache .
Schritt 1.1.8.1
Vereinfache jeden Term.
Schritt 1.1.8.1.1
Multipliziere .
Schritt 1.1.8.1.1.1
Mutltipliziere mit .
Schritt 1.1.8.1.1.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.1.8.1.1.3
Mutltipliziere mit .
Schritt 1.1.8.1.1.4
Mutltipliziere mit .
Schritt 1.1.8.1.2
Multipliziere .
Schritt 1.1.8.1.2.1
Mutltipliziere mit .
Schritt 1.1.8.1.2.2
Mutltipliziere mit .
Schritt 1.1.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2
Der genau Wert von ist .
Schritt 1.2.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.2.2
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 1.2.3
Wende die Identitätsgleichung für Winkelsummen an.
Schritt 1.2.4
Der genau Wert von ist .
Schritt 1.2.5
Der genau Wert von ist .
Schritt 1.2.6
Der genau Wert von ist .
Schritt 1.2.7
Der genau Wert von ist .
Schritt 1.2.8
Vereinfache .
Schritt 1.2.8.1
Vereinfache jeden Term.
Schritt 1.2.8.1.1
Multipliziere .
Schritt 1.2.8.1.1.1
Mutltipliziere mit .
Schritt 1.2.8.1.1.2
Mutltipliziere mit .
Schritt 1.2.8.1.2
Multipliziere .
Schritt 1.2.8.1.2.1
Mutltipliziere mit .
Schritt 1.2.8.1.2.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.2.8.1.2.3
Mutltipliziere mit .
Schritt 1.2.8.1.2.4
Mutltipliziere mit .
Schritt 1.2.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3
Kombiniere und .
Schritt 2
Schritt 2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2
Multipliziere .
Schritt 2.1.2.1
Mutltipliziere mit .
Schritt 2.1.2.2
Mutltipliziere mit .
Schritt 2.1.3
Wende das Distributivgesetz an.
Schritt 2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2
Forme den Ausdruck um.