Algebra Beispiele

Convert to Rectangular (4(cos(105)+isin(105)))^3
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Der genau Wert von ist .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.1.2
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 1.1.3
Wende das Additionstheorem der Trigonometrie an.
Schritt 1.1.4
Der genau Wert von ist .
Schritt 1.1.5
Der genau Wert von ist .
Schritt 1.1.6
Der genau Wert von ist .
Schritt 1.1.7
Der genau Wert von ist .
Schritt 1.1.8
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.8.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.8.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.8.1.1.1
Mutltipliziere mit .
Schritt 1.1.8.1.1.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.1.8.1.1.3
Mutltipliziere mit .
Schritt 1.1.8.1.1.4
Mutltipliziere mit .
Schritt 1.1.8.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.8.1.2.1
Mutltipliziere mit .
Schritt 1.1.8.1.2.2
Mutltipliziere mit .
Schritt 1.1.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2
Der genau Wert von ist .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.2.2
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 1.2.3
Wende die Identitätsgleichung für Winkelsummen an.
Schritt 1.2.4
Der genau Wert von ist .
Schritt 1.2.5
Der genau Wert von ist .
Schritt 1.2.6
Der genau Wert von ist .
Schritt 1.2.7
Der genau Wert von ist .
Schritt 1.2.8
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.1.1.1
Mutltipliziere mit .
Schritt 1.2.8.1.1.2
Mutltipliziere mit .
Schritt 1.2.8.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.8.1.2.1
Mutltipliziere mit .
Schritt 1.2.8.1.2.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.2.8.1.2.3
Mutltipliziere mit .
Schritt 1.2.8.1.2.4
Mutltipliziere mit .
Schritt 1.2.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3
Kombiniere und .
Schritt 2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Mutltipliziere mit .
Schritt 2.1.2.2
Mutltipliziere mit .
Schritt 2.1.3
Wende das Distributivgesetz an.
Schritt 2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2
Forme den Ausdruck um.