Algebra Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen xe^(-x)
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.2.3
Ersetze alle durch .
Schritt 2.1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.3.1
Mutltipliziere mit .
Schritt 2.1.3.3.2
Bringe auf die linke Seite von .
Schritt 2.1.3.3.3
Schreibe als um.
Schritt 2.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.5
Mutltipliziere mit .
Schritt 2.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Stelle die Terme um.
Schritt 2.1.4.2
Stelle die Faktoren in um.
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Multipliziere mit .
Schritt 3.2.3
Faktorisiere aus heraus.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.4.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 3.4.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 3.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.5.2.2.2.2
Dividiere durch .
Schritt 3.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.3.1
Dividiere durch .
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Die Werte, die die Ableitung gleich machen, sind .
Schritt 5
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Schritt 6
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Mutltipliziere mit .
Schritt 6.2.1.2
Alles, was mit potenziert wird, ist .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.1.5
Alles, was mit potenziert wird, ist .
Schritt 6.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Mutltipliziere mit .
Schritt 7.2.1.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 7.2.1.3
Kombiniere und .
Schritt 7.2.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.1.5
Mutltipliziere mit .
Schritt 7.2.1.6
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 7.2.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.2.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.2.1
Addiere und .
Schritt 7.2.2.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9