Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Differenziere.
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Vereinfache.
Schritt 2.3.1
Stelle die Faktoren von um.
Schritt 2.3.2
Stelle die Faktoren in um.
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3.3
Ersetze alle durch .
Schritt 3.4
Differenziere.
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.5
Potenziere mit .
Schritt 3.6
Potenziere mit .
Schritt 3.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.8
Vereinfache den Ausdruck.
Schritt 3.8.1
Addiere und .
Schritt 3.8.2
Bringe auf die linke Seite von .
Schritt 3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Vereinfache.
Schritt 3.11.1
Wende das Distributivgesetz an.
Schritt 3.11.2
Mutltipliziere mit .
Schritt 3.11.3
Stelle die Terme um.
Schritt 3.11.4
Stelle die Faktoren in um.
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 5.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 5.1.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 5.1.1.3
Ersetze alle durch .
Schritt 5.1.2
Differenziere.
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.3
Vereinfache.
Schritt 5.1.3.1
Stelle die Faktoren von um.
Schritt 5.1.3.2
Stelle die Faktoren in um.
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.3
Setze gleich .
Schritt 6.4
Setze gleich und löse nach auf.
Schritt 6.4.1
Setze gleich .
Schritt 6.4.2
Löse nach auf.
Schritt 6.4.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 6.4.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 6.4.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 6.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Schritt 10.1
Vereinfache jeden Term.
Schritt 10.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.2
Mutltipliziere mit .
Schritt 10.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.4
Mutltipliziere mit .
Schritt 10.1.5
Alles, was mit potenziert wird, ist .
Schritt 10.1.6
Mutltipliziere mit .
Schritt 10.1.7
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.8
Mutltipliziere mit .
Schritt 10.1.9
Alles, was mit potenziert wird, ist .
Schritt 10.1.10
Mutltipliziere mit .
Schritt 10.2
Subtrahiere von .
Schritt 11
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.2
Mutltipliziere mit .
Schritt 12.2.3
Alles, was mit potenziert wird, ist .
Schritt 12.2.4
Die endgültige Lösung ist .
Schritt 13
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
Schritt 14