Algebra Beispiele

Ermittle die Umkehrfunktion y = natural log of x^5
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 2.3
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 2.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe die Gleichung als um.
Schritt 2.4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 4.2.4
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Benutze , um als neu zu schreiben.
Schritt 4.3.3.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.3.3
Kombiniere und .
Schritt 4.3.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.4.2
Dividiere durch .
Schritt 4.3.4
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 4.3.5
Der natürliche Logarithmus von ist .
Schritt 4.3.6
Mutltipliziere mit .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .