Algebra Beispiele

Löse durch Faktorisieren x^4-x^2=x^2+8
Schritt 1
Bringe alle Ausdrücke auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Subtrahiere von .
Schritt 3
Schreibe als um.
Schritt 4
Es sei . Ersetze für alle .
Schritt 5
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 5.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 6
Ersetze alle durch .
Schritt 7
Schreibe als um.
Schritt 8
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 9
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 10
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Setze gleich .
Schritt 10.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 11
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Setze gleich .
Schritt 11.2
Addiere zu beiden Seiten der Gleichung.
Schritt 12
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Setze gleich .
Schritt 12.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 12.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.3.1
Schreibe als um.
Schritt 12.2.3.2
Schreibe als um.
Schritt 12.2.3.3
Schreibe als um.
Schritt 12.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 12.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 12.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 13
Die endgültige Lösung sind alle Werte, die wahr machen.