Algebra Beispiele

Bestimme den Definitionsbereich f(x) = natural log of 3/(x^2+1)
Schritt 1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4
Schreibe als um.
Schritt 2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.6
Der Leitkoeffizient kann nicht ermittelt werden, da kein Polynom ist.
Kein Polynom
Schritt 2.7
Da es keine reellen x-Achsenabschnitte gibt und der Leitkoeffizient positiv ist, ist die Parabel nach oben geöffnet und ist immer größer als .
Alle reellen Zahlen
Alle reellen Zahlen
Schritt 3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4.3
Schreibe als um.
Schritt 4.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5
Der Definitionsbereich umfasst alle reellen Zahlen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 6