Algebra Beispiele

Bestimme die mögliche Anzahl reeller Nullstellen p(x)=(x^2+6x+9)(x+3)
Schritt 1
Vereinfache und ordne das Polynom in absteigender Reihenfolge neu an, um die Regel von Descartes anzuwenden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 1.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1.1.1
Potenziere mit .
Schritt 1.2.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.1.1.2
Addiere und .
Schritt 1.2.1.2
Bringe auf die linke Seite von .
Schritt 1.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.3.1
Bewege .
Schritt 1.2.1.3.2
Mutltipliziere mit .
Schritt 1.2.1.4
Mutltipliziere mit .
Schritt 1.2.1.5
Mutltipliziere mit .
Schritt 1.2.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Addiere und .
Schritt 1.2.2.2
Addiere und .
Schritt 2
Um die Anzahl möglicher positiver Wurzeln zu bestimmen, betrachte die Vorzeichen der Koeffizienten und zähle, wie oft die Vorzeichen der Koeffizienten von positiv nach negativ oder von negativ nach positiv wechseln.
Schritt 3
Da vom Term höchster Ordnung zum niedrigsten Term Vorzeichenwechsel erfolgen, gibt es höchstens positive Nullstellen (Vorzeichenregel von Descartes).
Positive Wurzeln:
Schritt 4
Um die mögliche Anzahl negativer Wurzeln zu ermitteln, ersetze durch und wiederhole den Vorzeichenvergleich.
Schritt 5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende die Produktregel auf an.
Schritt 5.2
Potenziere mit .
Schritt 5.3
Wende die Produktregel auf an.
Schritt 5.4
Potenziere mit .
Schritt 5.5
Mutltipliziere mit .
Schritt 5.6
Mutltipliziere mit .
Schritt 6
Da vom Term höchster Ordnung zum niedrigsten Term Vorzeichenwechsel erfolgen, gibt es höchstens negative Wurzeln (Vorzeichenregel von Descartes). Die anderen möglichen Anzahlen negativer Wurzeln werden bestimmt, indem Paare von Wurzeln voneinander subtrahiert werden (z. B. ).
Negative Wurzeln: oder
Schritt 7
Die mögliche Anzahl positiver Wurzeln ist und die mögliche Anzahl negativer Wurzeln ist oder .
Positive Wurzeln:
Negative Wurzeln: oder