Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Um zu ermitteln, ob die Tabelle einer Funktionsregel folgt, prüfe, ob die Werte der linearen Form folgen.
Schritt 1.2
Erzeuge eine Menge von Gleichungen aus der Tabelle, sodass .
Schritt 1.3
Berechne die Werte von und .
Schritt 1.3.1
Schreibe die Gleichung als um.
Schritt 1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 1.3.2.1
Ersetze alle in durch .
Schritt 1.3.2.2
Vereinfache .
Schritt 1.3.2.2.1
Vereinfache die linke Seite.
Schritt 1.3.2.2.1.1
Entferne die Klammern.
Schritt 1.3.2.2.2
Vereinfache die rechte Seite.
Schritt 1.3.2.2.2.1
Bringe auf die linke Seite von .
Schritt 1.3.2.3
Ersetze alle in durch .
Schritt 1.3.2.4
Vereinfache .
Schritt 1.3.2.4.1
Vereinfache die linke Seite.
Schritt 1.3.2.4.1.1
Entferne die Klammern.
Schritt 1.3.2.4.2
Vereinfache die rechte Seite.
Schritt 1.3.2.4.2.1
Bringe auf die linke Seite von .
Schritt 1.3.3
Löse in nach auf.
Schritt 1.3.3.1
Schreibe die Gleichung als um.
Schritt 1.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 1.3.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.3.2.2
Subtrahiere von .
Schritt 1.3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 1.3.3.3.2
Vereinfache die linke Seite.
Schritt 1.3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.3.2.1.2
Dividiere durch .
Schritt 1.3.3.3.3
Vereinfache die rechte Seite.
Schritt 1.3.3.3.3.1
Dividiere durch .
Schritt 1.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 1.3.4.1
Ersetze alle in durch .
Schritt 1.3.4.2
Vereinfache die rechte Seite.
Schritt 1.3.4.2.1
Vereinfache .
Schritt 1.3.4.2.1.1
Mutltipliziere mit .
Schritt 1.3.4.2.1.2
Addiere und .
Schritt 1.3.5
Da nicht wahr ist, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 1.4
Da für die entsprechenden -Werte , ist die Funktion nicht linear.
Die Funktion ist nicht linear
Die Funktion ist nicht linear
Schritt 2
Schritt 2.1
Um zu ermitteln, ob der Tabelle eine Funktionsregel zugrunde liegt, prüfe, ob die Werte der Form folgen.
Schritt 2.2
Erzeuge einen Menge mit Gleichungen aus der Tabelle, sodass .
Schritt 2.3
Berechne die Werte von , und .
Schritt 2.3.1
Löse in nach auf.
Schritt 2.3.1.1
Schreibe die Gleichung als um.
Schritt 2.3.1.2
Vereinfache .
Schritt 2.3.1.2.1
Vereinfache jeden Term.
Schritt 2.3.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.3.1.2.1.2
Mutltipliziere mit .
Schritt 2.3.1.2.2
Addiere und .
Schritt 2.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.3.2.1
Ersetze alle in durch .
Schritt 2.3.2.2
Vereinfache .
Schritt 2.3.2.2.1
Vereinfache die linke Seite.
Schritt 2.3.2.2.1.1
Entferne die Klammern.
Schritt 2.3.2.2.2
Vereinfache die rechte Seite.
Schritt 2.3.2.2.2.1
Vereinfache jeden Term.
Schritt 2.3.2.2.2.1.1
Potenziere mit .
Schritt 2.3.2.2.2.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.2.2.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2.3
Ersetze alle in durch .
Schritt 2.3.2.4
Vereinfache .
Schritt 2.3.2.4.1
Vereinfache die linke Seite.
Schritt 2.3.2.4.1.1
Entferne die Klammern.
Schritt 2.3.2.4.2
Vereinfache die rechte Seite.
Schritt 2.3.2.4.2.1
Vereinfache jeden Term.
Schritt 2.3.2.4.2.1.1
Potenziere mit .
Schritt 2.3.2.4.2.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.4.2.1.3
Bringe auf die linke Seite von .
Schritt 2.3.3
Löse in nach auf.
Schritt 2.3.3.1
Schreibe die Gleichung als um.
Schritt 2.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.3.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.3.2.3
Subtrahiere von .
Schritt 2.3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.3.3.2
Vereinfache die linke Seite.
Schritt 2.3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.3.2.1.2
Dividiere durch .
Schritt 2.3.3.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.3.3.1
Vereinfache jeden Term.
Schritt 2.3.3.3.3.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.3.3.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.3.3.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.3.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.3.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.3.3.1.1.2.3
Forme den Ausdruck um.
Schritt 2.3.3.3.3.1.2
Dividiere durch .
Schritt 2.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.3.4.1
Ersetze alle in durch .
Schritt 2.3.4.2
Vereinfache die rechte Seite.
Schritt 2.3.4.2.1
Vereinfache .
Schritt 2.3.4.2.1.1
Vereinfache jeden Term.
Schritt 2.3.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.3.4.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.4.2.1.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.4.2.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.4.2.1.1.2.3
Forme den Ausdruck um.
Schritt 2.3.4.2.1.1.3
Mutltipliziere mit .
Schritt 2.3.4.2.1.2
Vereinfache durch Addieren von Termen.
Schritt 2.3.4.2.1.2.1
Subtrahiere von .
Schritt 2.3.4.2.1.2.2
Addiere und .
Schritt 2.3.5
Löse in nach auf.
Schritt 2.3.5.1
Schreibe die Gleichung als um.
Schritt 2.3.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.3.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.5.2.2
Addiere und .
Schritt 2.3.5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.5.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.5.3.2
Vereinfache die linke Seite.
Schritt 2.3.5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.3.2.1.2
Dividiere durch .
Schritt 2.3.5.3.3
Vereinfache die rechte Seite.
Schritt 2.3.5.3.3.1
Dividiere durch .
Schritt 2.3.6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.3.6.1
Ersetze alle in durch .
Schritt 2.3.6.2
Vereinfache die rechte Seite.
Schritt 2.3.6.2.1
Vereinfache .
Schritt 2.3.6.2.1.1
Dividiere durch .
Schritt 2.3.6.2.1.2
Subtrahiere von .
Schritt 2.3.7
Liste alle Lösungen auf.
Schritt 2.4
Berechne den Wert von für jeden -Wert in der Tabelle und vergleiche diesen Wert mit dem gegebenen -Wert in der Tabelle.
Schritt 2.4.1
Berechne den Wert von so, dass , wenn , , und .
Schritt 2.4.1.1
Vereinfache jeden Term.
Schritt 2.4.1.1.1
Potenziere mit .
Schritt 2.4.1.1.2
Mutltipliziere mit .
Schritt 2.4.1.1.3
Mutltipliziere mit .
Schritt 2.4.1.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 2.4.1.2.1
Subtrahiere von .
Schritt 2.4.1.2.2
Addiere und .
Schritt 2.4.2
Wenn die Tabelle eine quadratische Funktionsregel hat, gilt für den korrespondierenden -Wert, . Diesen Test besteht die Tabelle nicht, da und . Die Funktionsregel kann nicht quadratisch sein.
Schritt 2.4.3
Da für die entsprechenden -Werte , ist die Funktion nicht quadratisch.
Die Funktion ist nicht quadratisch
Die Funktion ist nicht quadratisch
Die Funktion ist nicht quadratisch
Schritt 3
Es gibt keine Werte für , , oder in den Gleichungen oder , welche für jedes Paar von und passen.
Die Wertetabelle hat keine Funktionsregel, die linear oder quadratisch ist.